HW 7: POLYNOMIALS, LINEAR ALGEBRA

1. Prove that the zeros of the polynomial $\mathrm{P}(z)=z^{7}+7 z^{4}+4 z+1$ lie inside the disk of radius 2 centered at the origin.
2. Let A and B be 2×2 matrices with real entries satisfying $(A B-B A)^{n}=I_{2}$ for some positive integer n. Prove that n is even and $(A B-B A)^{4}=I_{2}$.
3. There are given $2 n+1$ real numbers, $n \geq 1$, with the property that whenever one of them is removed, the remaining $2 n$ can be split into two sets of n elements that have the same sum of elements. Prove that all the numbers are equal.
4. Let A, B be 2×2 matrices with integer entries, such that $A B=B A$ and $\operatorname{det} B=1$. Prove that if $\operatorname{det}\left(A^{3}+B^{3}\right)=1$, then $A^{2}=0$.
5. Let p be a prime integer. Prove that the determinant of the matrix

$$
\left(\begin{array}{ccc}
x & y & z \\
x^{p} & y^{p} & z^{p} \\
x^{p^{2}} & y^{p^{2}} & z^{p^{2}}
\end{array}\right)
$$

is congruent modulo p to a product of polynomials of the form $a x+b y+c z$, where a, b, c are integers. (We say two integer polynomials are congruent modulo p if corresponding coefficients are congruent modulo p.)
6. Find a nonzero polynomial $P(x, y)$ such that $P([a],[2 a])=0$ for all real numbers a. (Note: $[v]$ is the greatest integer less than or equal to v.)
7. Show that the curve $x^{3}+3 x y+y^{3}=1$ contains only one set of three distinct points, A, B, and C, which are vertices of an equilateral triangle, and find its area.

